Thứ Tư, 21 tháng 1, 2015

88-A generalization of Nine point circle

Let ABC be a triangle, let $A_0B_0C_0$ be Kiepert triangle of ABC. The circle with diameter $AA_0$ meets  $BC$ at $A_bA_c$. Define $B_a,B_c,C_a,C_b$ cyclically. Show that six point $A_bA_c$ , $B_a,B_c$, $ C_a,C_b$ lie on a circle. When the Kiepert triangle is median triangle of ABC the circle is Nine point circle. The result is well-known?

Telv Cohl's proof:

Let $ A_B, A_C $ be the projection of $ A_0 $ on $ AB, AC $, respectively .
Let $ B_C, B_A $ be the projection of $ B_0 $ on $ BC, BA $, respectively .
Let $ C_A, C_B$ be the projection of $ C_0 $ on $ CA, CB $, respectively .

Easy to see $ B_A \in \odot (BB_0) $ and $ C_A \in \odot (CC_0) $ . From $ Rt \triangle AB_0B_A \sim Rt \triangle AC_0C_A \Longrightarrow AB_A:AC_A=AB_0:AC_0=AC:AB $ , so we get $ AB_c \cdot AB_a=AB \cdot AB_A=AC \cdot AC_A=AC_a \cdot AC_b \Longrightarrow B_c, B_a, C_a, C_b $ are concyclic . Similarly, we can prove $ C_a, C_b, A_b, A_c $ are concyclic and $ A_b, A_c, B_c, B_a $ are concyclic, so from Davis theorem we get $ A_b, A_c, B_c, B_a, C_a, C_b $ are concyclic.

Luis González's proof:

If one goes for the center and radius of the circle the result is quite nice. If $\theta$ denotes the Kiepert angle and $R$ and $S$ denote the circumradius and area of $\triangle ABC,$ respectively, we prove that these 6 points lie on a circle with center the 9-point center $N$ and radius $\varrho = \sqrt{\tfrac{1}{4}R^2+S \cdot \tan \theta}.$

Let $O,H$ denote the circumcenter and orthocenter of $\triangle ABC.$ $X$ is the projection of $A$ on $BC,$ $M$ is the midpoint of $BC$ and $L$ is the midpoint of $XM.$ If $AX$ cuts the circle with diameter $AD$ again at $U,$ then by symmetry $A_bUDA_c$ is an isosceles trapezoid. In the cyclic $AA_bUA_c$ with perpendicular diagonals, we have

${A_bA_c}^2=(XA_b+XA_c)^2={XA_b}^2+{XA_c}^2 +2 \cdot XA_b \cdot XA_c=$

$=4R^2-(AX^2+XU^2)+2 \cdot AX \cdot XU=AD^2-(AX-XU)^2=$

$=(AX+XU)^2+XM^2-(AX-XU)^2=XM^2+4 \cdot AX \cdot XU \Longrightarrow$

${NA_b}^2=NL^2+{LA_b}^2=NL^2+\tfrac{1}{4}XM^2+AX \cdot XU.$

Substituting $XM^2=OH^2-(HX-OM)^2,$ $NL=\tfrac{1}{2}(OM+HX)$ and $OM=\tfrac{1}{2}HA$ into the latter expression and factoring yields

${NA_b}^2=\tfrac{1}{2}HA \cdot HX+\tfrac{1}{4}OH^2+AX \cdot XU.$

Now, substituting $HA \cdot HX=\tfrac{1}{2}(R^2-OH^2)$ and $XU=MD=BM \cdot \tan \theta$ into the latter expression, we obtain ${NA_b}^2=\tfrac{1}{4}R^2+S \cdot \tan \theta,$ which is obviously a symmetric expression. Thus we conclude the 6 described points lie on a circle with center $N$ and radius $\varrho=\sqrt{\tfrac{1}{4}R^2+S \cdot \tan \theta}.$


Không có nhận xét nào: