Thứ Tư, 5 tháng 11, 2014

83-Six points lie on a circle associated Botema configuration

Let $ABC$ be a triangle $M_a$ is midpoint of $BC$, $H$ is the orthocenter of the triangle $ABC$. Let $V_A$, $V_B$, $V'_A$, $V'_B$ are center of four squares. Show that six points $V_A,$ $V'_a,$ $M_a,$ $H_a,$ $V_B,$ $V'_B$  lie on a circle.

Không có nhận xét nào: