Let a rectangular circumhyperbola of ABC, let L is the isogonal conjugate line of the rectangular hyperbola. The tangent line of the hyperbola at X(4) meets L at point K. The line through K and center of the hyperbola meets the hyperbola at $F_+,F_-$. Let $ I_+,I_-,G$ are isogonal conjugate of $F_+,F_-$ and $K$ respectively. Show that: $I_+,I_-,G,X(110)$ alway lie on a circle, this circle is a generalization of Parry circle.
Không có nhận xét nào:
Đăng nhận xét