Chủ Nhật, 25 tháng 1, 2015

91-Dual problem of a generalization of Napoleon theorem

Let ABC be a triangle, let P be a point on the line $X(13)X(15)$ (or $X(14)X(16)$). Three line through $P$ and perpendicular to $BC$ meets the line $AX(13)$ (or $AX(16)$ at $A0$, define $B0,C0$ cyclically. Show that A0B0C0 are an equilateral triangle homothety to Napoleon triangle and the homothetic center draw the line $X(2)X(13)$ (or $X(2)X(14)$)




Không có nhận xét nào: