Thứ Sáu, 12 tháng 9, 2014

33-120 Pascal points lie on circumcircle

When I found way ageneralization problem at here Yet Another Seven Circles Theorem, I think may be it is true if P is a line? I check and found problems following. I named problems is 120 Pascal points lie on circumcircle.



Let cyclic hexagon ABCDEFBD meets CF at HAD meets CE at GBEmeets AF at I . Three circle (BIH),(AIG),(CHG) concurrent at a point Plie on circumcircle. Similar we have three circle (IFH),(IEG),(HDG)concurrent at a point J lie on the circle (ABCDEF). With a cyclic hexagon, we have 60 Pascal's line. Then we have 120 Pascal point in configuration


Không có nhận xét nào: