Thứ Bảy, 13 tháng 9, 2014

47-Pair triangle homothetic

Let two triangle ABC and A_1B_1C_1. Such that AB//A1B1,BC//B1C1AC//A_1C_1B_1C_1 meet AB,AC at A_c,A_b. Define B_c,B_a,C_a,C_bcyclically. Denote O,O_1 is center of circumcircle (ABC) and (A_1B_1C_1). Denote Oa is center of circle (AA_bA_c), Define O_b,O_c cyclically. O_{a1} is center of (A_1B_aC_a). Define O_{b1},O_{c1} cyclically.
Prove that: 

1-(C_1B_cA_c) tangent with three circle (A_1B_1C_1), (AA_cA_b), (BB_cB_a)
2-O_aO_{a1}, O_bO_{b1},O_cO_{c1} are concurrent at D and D is midpoints of OO_1; whenA_1B_1C_1 are median triangle then D is midpoints of center Nine point circle and Circumcircle

http://www.geogebratube.org/student/m84530

Không có nhận xét nào: