Thứ Bảy, 13 tháng 9, 2014

58-Two nice line in a triangle

The first line: 

Let ABC be a triangle, a line (d) meets BC,CA,AB at A_1,B_1,C_1. A_2,B_2,C_2 are midpoints of B_1C_1,A_2C_2,B_2A_2A_3,B_3,C_3 are reflection of A,B,C in A_2,B_2,C_2. Then A_3,B_3,C_3 are collinear.

Solution:

http://www.cut-the-knot.org/pythagoras/AMatterOfCollinearity.shtml

The Secon line:


Let ABC be a triangle, H_a,H_b,H_c are projection of A,B,C on BC,CA,ABG be a point on the plane. A_1,A_2 lie on GA,GH_a respectively, define B_1,B_2,C_1,C_2 cyclically such that \frac{GA_1}{GA}=\frac{GA_2}{GH_a}=\frac{GB_1}{GB}=\frac{GB_2}{GH_b}=\frac{GC_1}{GC}=\frac{GC_2}{GH_c}=tA_3 is intersection of perpendicular of GA,GH_a at A_1,A_2. Define B_3,C_3 cyclically. Then A_3,B_3,C_3 are collinear. Please see the figure attachments

Solution: by Telv Cohl https://www.facebook.com/telv.cohl?fref=ts

Let A4 B4 C4 be the mid point of GA3 GB3 GC3 and H' be the orthocenter of triangle A1B1C1. Easy to see GA3 is the diameter of circle(GA1A2A3)
and A4 is the center of circle(GA1A2A3) similarity for B3 B4 and C3 C4

Since A1H' x H'A2=B1H' x H'B2=C1H' x H'C2 so (GA1A2A3) (GB1B2B3) (GC1C2C3) are coxial ( with common radical axis GH' ) hence A4 B4 C4 are collinear ie.A3 B3 C3 are collinear

Không có nhận xét nào: