Thứ Sáu, 12 tháng 9, 2014

35-Three circles and a conic

Let A,B,C,D are concyclic; B,N,P,C are concyclic; M,A,D,Q are concyclic. Let A,B,C,D,M,N,P,Q are on conic. Prove that: M,N,P,Qare concyclic.




Solution by: Luis González

\mathcal{C} the given conic with axes \ell_1,\ell_2. Arbitrary circle \omega through A,D cuts \mathcal{C} again atX,Y. U,V are points on \mathcal{C}, such that the tangents of \mathcal{C} at U,V are parallel to XY,AD, respectively. Let I be the intersection of these tangents and J \equiv AD \cap XY. By generalized power of point, we have 

\frac{IV^2}{IU^2}=\frac{JA \cdot JD}{JX \cdot JY}=1 \Longrightarrow IU=IV.

Hence, I is either on \ell_1 or \ell_2 \Longrightarrow AD and XY are equal inclined to \ell_1,\ell_2. Thus when \omega varies, keeping A,D fixed, all lines XY go through a fixed direction. As a result, we deduce that AD \parallel NP and BC \parallel MQ. If \odot(MNP) cuts \mathcal{C} again at Q^*, then BC \parallel MQ^* \Longrightarrow Q \equiv Q^* \Longrightarrow M,N,P,Q are concyclic.

Không có nhận xét nào: