Thứ Bảy, 13 tháng 9, 2014

44-Rhombus in Bicentric

Rhombus in Bicentric quadrilateral, please see problem in file ggb at here:




Solution by: Luis González:

Let P \equiv BC \cap DA and Q \equiv AB \cap CD. By angle chase, we have

\widehat{IQP}+\widehat{IPQ}=\tfrac{1}{2}(\widehat{AQD}+\widehat{CPD})+\widehat{PQB}+\widehat{QPB}= 

=\tfrac{1}{2}(\widehat{AQD}+\widehat{CPD})+\widehat{PBA}=180^{\circ}-\tfrac{1}{2}(\widehat{BCD}+\widehat{BAD})-\widehat{CDA}+...

=180^{\circ}-\tfrac{1}{2}(\widehat{BCD}+\widehat{BAD})=180^{\circ}-90^{\circ}=90^{\circ} \Longrightarrow \widehat{PIQ}=90^{\c... 

If QI cuts BC,DA at F',H', then from the isosceles \triangle PF'H', we get \widehat{DH'F'}=\widehat{CF'H'}=90^{\circ}+\tfrac{1}{2}\widehat{CPD}=\widehat{DIC} \Longrightarrow H \equiv H' and F \equiv F'.Analogously, E,G are the intersections of PI with AB,CD. Hence I is midpoint of \overline{FH},\overline{EG} and \widehat{EIF} \equiv \widehat{PIQ}=90^{\circ} \Longrightarrow EFGH is a rhombus.

Không có nhận xét nào: