Thứ Sáu, 12 tháng 9, 2014

38-A circle through fixed point

Let ABC be a triangle. Construct two triangle ADBAEC on the two sides AB,AC. Let (d) on the plane, M is on (d).. Construct two lines through M, and these two lines meet AB,AC respectively atB_1,C_1, such that angle of three line are fixed when M moved on the line (d).  Denote D_1,E_1 respectively are on AD,AE such that B_1D_1//BD and C_1E_1//CE. Prove that: When M moved on the line (d), the circle (AD_1E1_)through fixed point.


Solution by: Luis González:



Since MC_1 and C_1E_1 have constant directions, then clearly M \mapsto C_1 is a perspectivity from d to AC and C_1 \mapsto E_1 is a perspectivity from AC to AE.Analogously, M \mapsto B_1 is a perspectivity from d to AB and B_1 \mapsto D_1 is a perspectivity from AB to AD \Longrightarrow D_1 \mapsto E_1 is a homography from AD to AE,mapping the infinite point of AD into the infinite point of AE, when M is at infinity \Longrightarrow D_1E_1 envelopes a fixed parabola \mathcal{P} tangent to AD,AE \Longrightarrow circles \odot(AD_1E_1) go through the focus of \mathcal{P}.

Không có nhận xét nào: